

Workshop 3.2 "PI Systems"

Prof. Oliver Schauer University of Applied Sciences Upper Austria

This work has been funded by the State of Upper Austria as part of the research program 'FTI Struktur Land Oberösterreich'

Aim: Putting the Physical Internet Vision into Action

LOGISTIKUM CHALLENGE ACCEPTED

Prof. Dr. Oliver Schauer Wehrgrabengasse 1-3 | 4400 Steyr | Austria +43 5 0804 33224 Oliver.schauer@fh-steyr.at

www.logistikum.at | www.fh-ooe.at

This work has been funded by the State of Upper Austria as part of the research program 'FTI Struktur Land Oberösterreich'

IPIC 2017

Knowledge for Tomorrow

Physical Internet and its impact on the emission calculation standardization of transport chains – are we there yet?

Dr.-Ing. Verena Charlotte Ehrler DLR Institute of Transport Research IPIC 2017, Graz

PI and its impact on emission calculation standardisation

- Further optimising logistics
- Physical Internet a change of game
- Emission calculation standardisation
- PI and its impact
- Are we there yet

Source: Rainer Sturm / pixelio.de

Further optimising logistics

- why we need to understand the impact of PI on emissions

Historical greenhouse (GHG) emissions and projections until 2050

Source: IPIC and alice

Physical Internet – a change of game

From material to PI-container handling and storage

Smart networked containers

Multi-segment intermodal transport

Multi-tier conceptual framework

Modular containers

Capability certicicaions

Materialize objects as locally as possible

Physical Internet

Design products fitting containers

Source: alice, Petra Dirscherl / pixelio.de, wikicommons.org, BlickReflex.de / pixelio.de, Boris Wettig / pixelio.de, S. Hofschlaeger / pixelio.de

Open Global Supply Web

Businesses that measure their emissions have the opportunity to make informed decissions that lead to improved efficiency and reduced emissions

(source: LEARN 2017)

Emission calculation standardisation

Emission Transportation Standard	Scope
ISO 14064	methodology for the calculation and declaration of energy consumption and GHG emissions of transport services, freight and passengers
ISO /TS 14067	methodology for the calculation of carbon footprint of products
GREENHOUSE GAS PROTOCOL Scope 3	methodology for the assessment the impact of emissions of companies entire value chains; no explicit focus on transportation
EN 16258	methodology for the calculation and declaration of energy consumption and greenhouse gas emissions of transport services
GLEC LOGISTISS COUNCIL LE BY SMART FREGRIT CENTRE	framework combining existing standards and methodologies to calculate logistics emissions

The challenges of emission calculation standardisation

Source: own and GLEC Framework

Current gaps

- inclusion of black carbon
- refining modal default factors
- improved accounting of scope 3 emissions
- accuracy of emissions estimates
- challenges in data collection by SMEs
- transshipment center methodology
- default dataset of transshipment center
- Further research into weight of contents
- allocation between passengers and freight in shared transport
- accounting for leakage of gaseous fuels and refrigerants

PI and its impact

Level of operations of transport chain element

Source: own

PI and its impact

Level of network including company level

- shift of decision maker
- routing decisions taken at each node
- ad-hoc choices
- requirement for ex-ante calculation at each node
- track-and-trace of emissions easier

Source: own and Montreuil, Ballot, Fonate

PI and its impact

Level of cargo

- shippers define
 - final destination
 - requested time of arrival, monetary budget and
 - emission budget
- ex-ante estimations at every node
 - for node-to-node leg and
 - impact of decision on overall routeing

Source: Rainer Sturm / pixelio.de

Challenges toward emission calculation of PI

- ex-ante calculation of emission in ad-hoc network as basis for identification of overall lowest emission transport choice
- optimisation of transport networks require
 - · steering of usage of network and
 - providers' decision processes

- linking information of a shipment
 - to information on the transport device is was carried with
 - on every leg of its journey

Source: Montreuil, Ballot, Fonate

Are we there yet

- what needs to be done to estimate the PI's impact

Development needs regarding emission standardisation efforts

- inclusion of empty containers and their routing within PI
- identification of categories of goods suitable for the PI, including volume and routing

Development needs regarding PI development

need to establishing impact of PI on sustainability including

- environmental
- economic
- social aspects

Development needs beyond PI and emission standardisation efforts

need to discuss and consider paradigm shift in economics and business

Physical Internet and its impact on the emission calculation standardization of transport chains - we are not there yet

Dr.-Ing. Verena Ch. Ehrler DLR Institute of Transport Research verena.ehrler@dlr.de +49 (0)30 67055 453

Source: Rainer Sturm / pixelio.de

Dynamic Capacity Management to Support the Development of Physical Internet's Framework Conditions

Projects "ProKapa" & "IPPO"

Graz, July 19 2017

DI Georg Brunnthaller Research Associate

Fraunhofer Austria Research GmbH

Theresianumgasse 27 1040 Wien Tel: +43 1 504 69 06 Fax: +43 1 58801 33040

Content

- Adressed challenges
- Current project "IPPO":
 - Objectives and expected results
 - Methodology
- Current project "ProKapa":
 - Objectives and expected results
 - Methodology
- Discussion

AUSTRIA

Addressed challenges for freight transportation service providers and carriers:

- Economy:
 - Atomic market structure (exchangeability of contractors, intense competition) enforces ruinous competition.
 - Logistics service providers (owned fleets) have a **high share of fix costs** and are in danger to slide into the reds easily in case of fluctuations in capacity utilization.
- Ecology:
 - Traffic is highly dependent on oil products as primary energy source (> 80 %)

- Greenhouse-gas (GHG) emissions are growing disproportionally faster compared to gross domestic product (Germany from 1998 – 2007):
 - Gross Domestic Product: + 21 %
 - Traffic: + 51 %
- The European Union presented ambitious objectives to GHG-emissions, which are directly related to modal split and capacity utilization:
 - Road transportation: 50 70 % of available capacities are utilized.
 - Transportation mode: Road transportation grows relatively faster than rail and inland waterway from 1995 to 2013

Rising economic and ecological pressure on freight transportation sector. Capacity management actions directly influence these dimensions.

Current projects on anticipatory transportation planning

- IPPO: Continuous pre-planning of required transportation capacity for the design of sustainable freight transportation networks
 - Partners:
 - Duration: 2015 2017
 - Focus: Long-term, Fleet-sizing, Modal Choice
- ProKapa: Dynamic capacity management to support the development of Physical Internet's framework conditions
 - Partners: Software GmbH
 - Duration: 2017 2019 (Kick-off: October 2017)
 - Focus: Short-term, integrated personnel and resource planning, pricing strategies

... supported by:

IPPO: Objectives and expected results

- IPPO aims at the reduction of empty/loaded mileage and an increase in number of intermodal transports:
 - Forecast: Project future transport volumes
 - Planning: Gap-Analysis of needed and available resources in the network
 - Optimization: Identify alternative concepts to cope with mid- to long-term demand fluctuations

- As a result, applied methods are summarized in a "Proof-of-Concept"-Demonstrator:
 - Combine developed algorithms and methods
 - Give guidance for capacity adjustments
 - Demonstrate economic and ecological added value
 - Generic application of methods in automotive use-case

Objective is to contribute to positive development in resource utilization and mode choice and therefore add value to economic and ecological sustainable development.

Approach: Forecasting, Fleet-Modelling, Decision support

- Approach: Three-Step-Approach
 - Demand forecasting with different data sources
 - Model and Evaluate different **fleet-variants** for each future time period.
 - Model decision support for future fleet adjustments.
- Result: Favourable development of fleet size and mix according to transportation demand:

IPPO: Planned Results

- Evaluation of rolling pre-planning compared to static models.
- Evaluation of interrelation of CO2 compensation cost and emission-reductionpotential.
- Evaluation of fleet utilization in respect do different forecast-qualities.

Prokapa: Objectives and expected results

- ProKapa aims at enabling logistics service providers to react flexibly and adaptably to dynamic market changes:
 - Accelerate planning duration
 - Enhance planning **frequency** (close to "real-time")
 - Increase resource utilization and reduce empty mileage
 - Smoothen transportation demand:
 - Proactive capacity management

- Implementation of cooperation-strategies
- Development of dynamic pricing strategies
- As a result, necessary **flexibility** is created in order to face future challenges in a highly dynamic market environment by **continuous recommendations of actions** in...
 - ...capacity adjustments,
 - …resource allocation and
 - ...dynamic pricing.

Expected results are suitable methods and tools for the preliminary planning for transports from a logistic service providers perspective.

Comments, Questions and Answers

. . .

We are looking forward to assist you in innovative projects ...

"Innovations for the today of the future"

DI Georg Brunnthaller

Research Associate

Theresianumgasse 27 1040 Vienna, Austria Tel: +43 676 88 86 16 georg.brunnthaller@fraunhofer.at

