

Sustainability and Competitiveness Is the Physical Internet a Solution?

Prof. Benoit Montreuil

Coca-Cola Chair in Material Handling & Distribution School of Industrial & Systems Engineering Director, Physical Internet Center Director, Supply Chain & Logistics Institute

International Physical Internet Conference

Graz, Austria 2017/07/04

Defining the Physical Internet

Hyperconnected global logistics system enabling seamless open asset sharing and flow consolidation through standardized encapsulation, modularization, protocols and interfaces

Image source: clyderathbone.com

Hyperconnected system definition by B. Montreuil, July 2015 PI definition adapted by Montreuil B, R.D. Meller & E. Ballot, June 2015 from Montreuil B., R.D. Meller & E. Ballot (2012). Physical Internet Foundations, In: Service Orientation in Holonic and Multi Agent Manufacturing and Robotics, edited by T. Borangiu et al., Springer.

A system is said to be hyperconnected when its components (agents, things, etc.) are intensely interconnected on multiple layers, ultimately anytime, anywhere

Layers interconnecting logistics networks and actors notably include digital, physical, operational, business, legal and interpersonal

Physical Internet building blocks

Toward an Hyperconnected Logistics Infrastructure

Certified Open Logistics Service Providers

Open Logistics Decisional & Transactional Platforms

B. Montreuil & C. Thivierge, 2011

Global Logistics Monitoring System

Certified Open Logistics Facilities and Ways

Standard Logistics Protocols

Containerized Logistics Equipment and Technology

Unified Set of Standard Modular Logistics Containers

Logistics Infrastructure: Shared assets enabling logistics to support supply chains

The Physical Internet

Transforming the way we deal with physical objects across the world

Enables across-the-board order-of-magnitude Improvement of economic, environmental & societal <u>efficiency & sustainability</u>

Improving the playing field across territories, industries and businesses worldwide

To improve by an order of magnitude the economical, environmental and societal efficiency and sustainability of the way physical objects are moved, deployed, realized, supplied, designed and used

Induced cost reduction Price reduction Business opportunity Economic development opportunity

Reduction of Greenhouse gas emissions Energy consumption Waste Pollution Traffic & Congestion

Improved Quality of life Goods accessibility Faster more precise delivery Novel service capabilities

inefficiency & unsustainability symptoms tackled by Physical Internet Highlighting Impact of Activity Types

inefficiency & unsustainability symptoms tackled by Physical Internet Highlighting Impact of Activity Types

Low impact

Better sustainability by encapsulating goods in π -containers: Think of a hybrid between Lego Blocks and Russian Dolls

They notably enable

- Better asset utilization through better 3D space usage & avoiding material waste
- Cheap, fast and secure goods flow through multiple hubs, modes & stakeholders
- Ubiquitous supply chain visibility & traceability issues
- Dynamic routing capabilities for better agility and resilience

Montreuil B., E. Ballot, W. Tremblay (2016).

Modular Design of Physical Internet Transport, Handling and Packaging Containers, Progress in Material Handling Research Vol. 13, Ed. J. Smith et al., MHI, Charlotte, NC, USA.

IPIC 2017, Keynote Speech, Prof. Benoit Montreuil, 2017/07/04, 9

1,2; 0,8; 0,6; 0,4; 0,3; 0,2; 0,1m - ϵ

Hyperconnected transportation and delivery Enabling order-of-magnitude efficiency & sustainability improvements

Adapted from: Hakimi D., B. Montreuil & E. Ballot (2012), Simulating a Physical Internet Enabled Logistics Web: the Case of Mass Distribution in France, ISERC 2012, 2012/-5/19-23

IPIC 2017, Keynote Speech, Prof. Benoit Montreuil, 2017/07/04, 10

Simple case: single-mode, In general: multimodal

Internet Center

Hyperconnected distribution and fulfillment Enabling order-of-magnitude efficiency & sustainability improvements

Current Distribution Dedicated assets Static structure

nternet

Center

Hyperconnected Distribution Deploy stock in openly shared DCs as demand fluctuates Efficiency & sustainability improvement potential Assessed through field-based analytics, optimization & simulation studies

Hyperconnected Transportation: Simulation Based Assessment

Carrefour and Casino in France and their 100 top suppliers

Current flows

Hyperconnected flows

Current: Trucks Hyperconnected: Trucks & Rail

Economical: Up to 32% overall cost saving Environmental: About 60% reduction of greenhouse gas emissions

2014 PREDIT Best International Collaboration Award

Ballot É., B. Montreuil, R. Meller (2015), The Physical Internet: The Network of Logistics Networks, Documentation Française.

Assess performance improvement potentiality Field-based analytics, optimization & simulation studies

Hyperconnected Distribution: Optimization Based Assessment

Business taking charge

Validating feasibility & creating stimulating successes and role models

- CO2 emission reduction: -25%
- From -5% to -15% of direct cost saving
- Delivery frequency improvement
- King of the Supply Chain Award 2016 in France

Adapted from a slide assembled by Prof. Eric Ballot, January 2016

nternet

Center

Enables efficient & sustainable order-of-magnitude <u>capability</u> improvement of businesses, industries and territories

Ex: Omnichannel, Responsiveness, Synchromodality, Agility, Scalability, Resilience

Enables across-the-board order-of-magnitude Improvement of economic, environmental & societal <u>efficiency & sustainability</u>

Improving the playing field across territories, industries and businesses worldwide

Physical Internet enabled capability improvement Results from a real case inspired simulation study of hyperconnected mixing center

150 manufacturers & 200 retailer DCs

Blue: Retailer DC Red: Factory, most not shown as outside this territory

Kim N. & B. Montreuil, Simulation-based Assessment of Hyperconnected Mixing Center Capacity Requirements and Service Capabilities, IPIC 2017, Graz, Austria.

Hyperconnected mixing center enables manufacturers serving retailers in a region to increase delivery frequency clients while reducing total travel

Scenario ID	Average Inter-Delivery Time in Days and Marginal Reduction					Average Marginal Reduction in Outbound Travel Distances	
	No MC	Dedicated MC		Hyper MC		From No MC to Dedicated MC	From Dedicated MC to Hyper MC
1	8.8	2.6	71%	2.1	18%	67%	1%
2	6.4	6.4	0%	3.4	46%	0%	59%
3	13.7	11.4	17%	4.7	59%	27%	40%
4	11.1	9.1	18%	2.3	75%	24%	39%
5	12.6	11.4	9%	4.3	62%	18%	51%
6	16.1	14.9	7%	9.7	35%	19%	55%

Business taking charge

Validating feasibility & creating stimulating successes and role models

Businesses Develop Business Models Enabling Hyperconnected Distribution & Fulfillment

Dynamically deploying products for rapid on-demand fulfillment Exploiting Physical Internet principles, Beyond client dedicated facilities and services

ES3

Openly shared automated DC Multi-manufacturer: full load inbound Multi-retailer full load outbound Enables Direct-to-store Medium-to-Long-Term Commitment

Flexe.com

On-Demand Warehousing Asset-free platform Multi-warehouse, Multi-User AirBnB-like shared economy model Pay-per-Use

Fulfillment-By-Amazon

First Open Large-Scale Asset-Based Storage and Fulfillment Service Provider Asset-Intensive: US fulfillment center network Open to any vendor, selling or not on Amazon Inspired by Amazon's huge success in cloud storage

rgia Physical Inte

Physical Internet enabled capability Improvement Enabling efficient & responsive hyperconnected omnichannel logistics & supply chains

Even though a single instance of each type of facility/entity is drawn, a networked combination of them may engaged in producing and flowing an order All lines are bilateral to emphasize the flow of purchased and returned goods

All lines indicate a flow that may be instantiated using multiple modes and being crossdocked/ transshipped through multiple hubs

Adapted from Montreuil B. (2017). *Omnichannel Business-to-Consumer Logistics and Supply Chains: Towards Hyperconnected Networks and Facilities,* **Progress in Material Handling Research Vol. 14**, Ed. K. Ellis et al., MHI, Charlotte, NC, USA

Physical Internet enabled capability Improvement Enabling efficient & responsive hyperconnected omnichannel logistics & supply chains

Exploiting hyperconnected transportation & delivery

- #: DO identifier, corresponds to a unique pattern.

Colored rounded block corresponds to delivery responsibility through hyperconnected transportation.

All flow lines indicate a flow that may be instantiated by DOs using multiple modes by multiple certified parties, crossdocked/ transhipped through multiple open hubs. Transportation by customer can be done by any means: foot, using his vehicle, public transit, taxi, crowdsourced vehicle or hyperconnected people transportation.

Exploiting hyperconnected city logistics

Exploiting hyperconnected fulfillment

Crainic T. G. & B. Montreuil (2016). Physical Internet Enabled Hyperconnected City Logistics, Transportation Research Procedia – 10th International Conference on City Logistics, v12, 383-398. Montreuil B. (2017). Omnichannel Business-to-Consumer Logistics and Supply Chains: Towards Hyperconnected Networks and Facilities, Progress in Material Handling Research Vol. 14, Ed. K. Ellis et al., MHI, Charlotte, NC, USA

nternet Center

Physical Internet enabled capability Improvement Enabling efficient & responsive hyperconnected omnichannel logistics & supply chains

Adapted from Montreuil B. (2017). *Omnichannel Business-to-Consumer Logistics and Supply Chains: Towards Hyperconnected Networks and Facilities,* **Progress in Material Handling Research Vol. 14**, Ed. K. Ellis et al., MHI, Charlotte, NC, USA

Physical Internet : Impact synopsis Efficiency, sustainability, capabilities and competitiveness

Enables <u>competitiveness</u> improvement of smart hyperconnected businesses, industries and territories

Exploiting/Enabling PI

Reduces <u>competitiveness</u> of businesses, industries and territories thriving from system inefficiencies

Incapable or unwilling to adapt to PI

Enables efficient & sustainable order-of-magnitude <u>capability</u> Improvement of businesses, industries and territories

Ex: Omnichannel, Responsiveness, Synchromodality, Agility, Scalability, Resilience

Enables across-the-board order-of-magnitude Improvement of economic, environmental & societal <u>efficiency & sustainability</u>

Improving the playing field across territories, industries and businesses worldwide

Focus on the MOVE business Covering freight/parcel transportation/shipping/delivery

Worldwide total revenues from transportation/delivery services

Georgia Physical Internet Center

Big, bad & ugly fear of services providers

Current Business

Perceived Future MOVE Business As Physical Internet Improves Efficiency

Externalized

Less Miles & Shipments Less Drivers/Vehicles Less Business More Cutthroat Competition

MOVE here covers Freight/Parcel Transportation/Shipping/Delivery

Broader Picture of PI Induced MOVE Business Evolution

Growing Share for Third-Party Carrier & Logistics Service Provider Community

MOVE here covers Freight/Parcel Transportation/Shipping/Delivery

Extended focus on the MOVE+DEPLOY business

Covering freight/parcel transportation/shipping/delivery Storage/Warehousing/Distribution/Fulfillment

Externalized MOVE & DEPLOY Business

MOVE

DEPLOY

Big, bad & ugly fear of services providers

Current Business

Perceived Future MOVE+DEPLOY Business As Physical Internet Improves Efficiency

MOVE

Less Miles & Shipments / Less Stock Less Drivers/Vehicles/Facilities Less Business More Cutthroat Competition

MOVE here covers Freight/Parcel Transportation/Shipping/Delivery DEPLOY here covers Storage/Warehousing/Distribution/Fulfillment

rgia ech Supply Chain & Logistics Institute

Broader Picture of PI Induced MOVE+DEPLOY Business Evolution

Declining Overall MOVE & DEPLOY Demand

Growing Share for Third-Party Carrier & Logistics Service Provider Community

MOVE here covers Freight/Parcel Transportation/Shipping/Delivery DEPLOY here covers Storage/Warehousing/Distribution/Fulfillment

Broad Picture of PI Induced MOVE+DEPLOY+REALIZE Business Evolution

Physical Internet : Impact synopsis Efficiency, sustainability, capabilities and competitiveness

Enables <u>competitiveness</u> improvement of smart hyperconnected businesses, industries and territories

Exploiting/Enabling PI

Reduces <u>competitiveness</u> of businesses, industries and territories thriving from system inefficiencies

Incapable or unwilling to adapt to PI

Enables efficient & sustainable order-of-magnitude <u>capability</u> Improvement of businesses, industries and territories

Ex: Omnichannel, Responsiveness, Synchromodality, Agility, Scalability, Resilience

Enables across-the-board order-of-magnitude Improvement of economic, environmental & societal <u>efficiency & sustainability</u>

Improving the playing field across territories, industries and businesses worldwide

Questions, comments and ideas are most welcome

Georgia Tech's Physical Internet Lab

Ce

Center

nternet

